Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38562747

RESUMEN

Accurate grading of IDH-mutant gliomas defines patient prognosis and guides the treatment path. Histological grading is however difficult and, apart from CDKN2A/B homozygous deletions in IDH-mutant astrocytomas, there are no other objective molecular markers used for grading. Experimental Design: RNA-sequencing was conducted on primary IDH-mutant astrocytomas (n=138) included in the prospective CATNON trial, which was performed to assess the prognostic effect of adjuvant and concurrent temozolomide. We integrated the RNA sequencing data with matched DNA-methylation and NGS data. We also used multi-omics data from IDH-mutant astrocytomas included in the TCGA dataset and validated results on matched primary and recurrent samples from the GLASS-NL study. We used the DNA-methylation profiles to generate a Continuous Grading Coefficient (CGC) that is based on classification scores derived from a CNS-tumor classifier. We found that the CGC was an independent predictor of survival outperforming current WHO-CNS5 and methylation-based classification. Our RNA-sequencing analysis revealed four distinct transcription clusters that were associated with i) an upregulation of cell cycling genes; ii) a downregulation of glial differentiation genes; iii) an upregulation of embryonic development genes (e.g. HOX, PAX and TBX) and iv) an upregulation of extracellular matrix genes. The upregulation of embryonic development genes was associated with a specific increase of CpG island methylation near these genes.

2.
Neurooncol Adv ; 5(1): vdad149, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38024241

RESUMEN

Background: The T2-FLAIR mismatch sign is defined by signal loss of the T2-weighted hyperintense area with Fluid-Attenuated Inversion Recovery (FLAIR) on magnetic resonance imaging, causing a hypointense region on FLAIR. It is a highly specific diagnostic marker for IDH-mutant astrocytoma and is postulated to be caused by intercellular microcystic change in the tumor tissue. However, not all IDH-mutant astrocytomas show this mismatch sign and some show the phenomenon in only part of the lesion. The aim of the study is to determine whether the T2-FLAIR mismatch phenomenon has any prognostic value beyond initial noninvasive molecular diagnosis. Methods: Patients initially diagnosed with histologically lower-grade (2 or 3) IDH-mutant astrocytoma and with at least 2 surgical resections were included in the GLASS-NL cohort. T2-FLAIR mismatch was determined, and the growth pattern of the recurrent tumor immediately before the second resection was annotated as invasive or expansive. The relation between the T2-FLAIR mismatch sign and tumor grade, microcystic change, overall survival (OS), and other clinical parameters was investigated both at first and second resection. Results: The T2-FLAIR mismatch sign was significantly related to Grade 2 (80% vs 51%), longer post-resection median OS (8.3 vs 5.2 years), expansive growth, and lower age at second resection. At first resection, no relation was found between the mismatch sign and OS. Microcystic change was associated with areas of T2-FLAIR mismatch. Conclusions: T2-FLAIR mismatch in IDH-mutant astrocytomas is correlated with microcystic change in the tumor tissue, favorable prognosis, and Grade 2 tumors at the time of second resection.

3.
iScience ; 26(1): 105760, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36590163

RESUMEN

Spatial transcriptomics is a novel technique that provides RNA-expression data with tissue-contextual annotations. Quality assessments of such techniques using end-user generated data are often lacking. Here, we evaluated data from the NanoString GeoMx Digital Spatial Profiling (DSP) platform and standard processing pipelines. We queried 72 ROIs from 12 glioma samples, performed replicate experiments of eight samples for validation, and evaluated five external datasets. The data consistently showed vastly different signal intensities between samples and experimental conditions that resulted in biased analysis. We evaluated the performance of alternative normalization strategies and show that quantile normalization can adequately address the technical issues related to the differences in data distributions. Compared to bulk RNA sequencing, NanoString DSP data show a limited dynamic range which underestimates differences between conditions. Weighted gene co-expression network analysis allowed extraction of gene signatures associated with tissue phenotypes from ROI annotations. Nanostring GeoMx DSP data therefore require alternative normalization methods and analysis pipelines.

4.
Eur J Cancer ; 175: 214-223, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36152406

RESUMEN

BACKGROUND: Grading and classification of IDH-mutant astrocytomas has shifted from solely histology towards histology combined with molecular diagnostics. In this systematic review, we give an overview of all currently known clinically relevant molecular markers within IDH-mutant astrocytomas grade 2 to 4. METHODS: A literature search was performed in five electronic databases for English original papers on patient outcome with respect to a molecular marker as determined by DNA/RNA sequencing, micro-arrays, or DNA methylation profiling in IDH-mutant astrocytomas grade 2 to 4. Papers were included if molecular diagnostics were performed on tumour tissue of at least 15 IDH-mutant astrocytoma patients, and if the investigated molecular markers were not limited to the diagnostic markers MGMT, ATRX, TERT, and/or TP53. RESULTS: The literature search identified 4508 unique articles, published between August 2012 and December 2021, of which ultimately 44 articles were included. Numerous molecular markers from these papers were significantly correlated to patient outcome. The associations between patient outcome and non-canonical IDH mutations, PI3K mutations, high expression of MSH2, high expression of RAD18, homozygous deletion of CDKN2A/B, amplification of PDGFRA, copy number neutral loss of chromosomal arm 17p, loss of chromosomal arm 19q, the G-CIMP-low DNA methylation cluster, high total CNV, and high tumour mutation burden were confirmed in multiple studies. CONCLUSIONS: Multiple genetic and epigenetic markers are associated with survival in IDH-mutant astrocytoma patients. Commonly affected are the RB signalling pathway, the RTK-PI3K-mTOR signalling pathway, genomic stability markers, and (epigenetic) gene regulation.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Linfoma Folicular , Astrocitoma/genética , Biomarcadores de Tumor/genética , ADN , Proteínas de Unión al ADN/genética , Homocigoto , Humanos , Isocitrato Deshidrogenasa/genética , Proteína 2 Homóloga a MutS/genética , Mutación , Fosfatidilinositol 3-Quinasas/genética , Eliminación de Secuencia , Serina-Treonina Quinasas TOR/genética , Ubiquitina-Proteína Ligasas/genética
5.
Acta Neuropathol ; 141(6): 945-957, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33740099

RESUMEN

Somatic mutations in the isocitrate dehydrogenase genes IDH1 and IDH2 occur at high frequency in several tumour types. Even though these mutations are confined to distinct hotspots, we show that gliomas are the only tumour type with an exceptionally high percentage of IDH1R132H mutations. Patients harbouring IDH1R132H mutated tumours have lower levels of genome-wide DNA-methylation, and an associated increased gene expression, compared to tumours with other IDH1/2 mutations ("non-R132H IDH1/2 mutations"). This reduced methylation is seen in multiple tumour types and thus appears independent of the site of origin. For 1p/19q non-codeleted glioma (astrocytoma) patients, we show that this difference is clinically relevant: in samples of the randomised phase III CATNON trial, patients harbouring tumours with IDH mutations other than IDH1R132H have a better outcome (hazard ratio 0.41, 95% CI [0.24, 0.71], p = 0.0013). Such non-R132H IDH1/2-mutated tumours also had a significantly lower proportion of tumours assigned to prognostically poor DNA-methylation classes (p < 0.001). IDH mutation-type was independent in a multivariable model containing known clinical and molecular prognostic factors. To confirm these observations, we validated the prognostic effect of IDH mutation type on a large independent dataset. The observation that non-R132H IDH1/2-mutated astrocytomas have a more favourable prognosis than their IDH1R132H mutated counterpart indicates that not all IDH-mutations are identical. This difference is clinically relevant and should be taken into account for patient prognostication.


Asunto(s)
Astrocitoma/diagnóstico , Astrocitoma/genética , Neoplasias Encefálicas/genética , Metilación de ADN/genética , Isocitrato Deshidrogenasa/genética , Mutación , Neoplasias Encefálicas/diagnóstico , Humanos , Pronóstico , Tasa de Supervivencia
6.
Cancers (Basel) ; 10(12)2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30518123

RESUMEN

The EGFR gene is one of the most frequently mutated and/or amplified gene both in lung adenocarcinomas (LUAD) and in glioblastomas (GBMs). Although both tumor types depend on the mutation for growth, clinical benefit of EGFR tyrosine kinase inhibitors (TKIs) has only been observed in LUAD patients and, thus-far, not in GBM patients. Also in LUAD patients however, responses are restricted to specific EGFR mutations only and these 'TKI-sensitive' mutations hardly occur in GBMs. This argues for mutation-specific (as opposed to tumor-type specific) responses to EGFR-TKIs. We here discuss potential reasons for the differences in mutation spectrum and highlight recent evidence for specific functions of different EGFR mutations. These mutation-specific effects likely underlie the differential treatment response between LUAD and GBMs and provide new insights into how to target EGFR in GBM patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...